Publications (Takaki Yamauchi)

Original Research

  • Li J, Ishii T, Yoshioka M, Hino Y, Nomoto M, Tada Y, Yoshioka H, Takahashi H, Yamauchi T, Nakazono M. (2024) CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. Plant Physiology, in press.

  • Yamauchi T, Tanaka A, Nakazono M, Inukai Y. (2024) Age-dependent analysis dissects the stepwise control of auxin-mediated lateral root development in rice. Plant Physiology, 194(2). 819—831.

  • Yamauchi T, Sumi K, Morishita H, Nomura Y. (2024) Root anatomical plasticity contributes to the different adaptive responses of two Phragmites species to water-deficit and low-oxygen conditions. Functional Plant Biology, 51. FP23231.

  • Nomura Y, Arima S, Kyogoku D, Yamauchi T, Tominaga T. (2024) Strong plastic responses in aerenchyma formation in F1 hybrids of Imperata cylindrica under different soil moisture conditions. Plant Biology, 26(3). 446—456.

  • Ning J, Yamauchi T, Takahashi H, Omori F, Mano Y, Nakazono M. (2023) Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Zea nicaraguensis during gravistimulation. Frontiers in Plant Science, 14. 1133009.

  • Yamauchi T, Nakazono M. (2022) Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. Plant Science, 321. 111340.

  • Yamauchi T, Pedersen, O, Nakazono M, Tsutsumi N. (2021) Key root traits of Poaceae respond to gradients in soil water. New Phytologist. 229(6). 3133—3140.

  • Arimura S, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, Watari Y, Yanase S, Yamauchi T, Itoh T, Toyoda, A, Takanashi H, Tsutsumi N. (2020) Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. The Plant Journal. 104(6). 1459—1471.

  • Yamauchi T, Tanaka A, Tsutsumi N, Inukai Y, Nakazono M. (2020) Distance-to-time conversion by using the Gompertz model reveals the age-dependent aerenchyma formation in rice roots. Plant Physiology.183(4). 1424—1427.

  •  Yamauchi T, Tanaka, A, Tsutsumi N, Inukai Y, Nakazono M. (2020) A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants.9(5). 610.

  • Yamauchi T, Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M. (2019) Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proceedings of the National Academy of Sciences of the USA, 116: 20770−20775.

  • Yamauchi T, Abe F, Tsutsumi N, Nakazono M. (2019) Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science, 10: 259.

  • Inahashi H, Shelly IJ, Yamauchi T, Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. (2018) OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiologia Plantarum, 164: 216−225.

  • Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M. (2017) An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. The Plant Cell, 29: 775−790.

  • Yamauchi T, Fukazawa A, Nakazono M. (2017) METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice. Plant Signaling &qmp; Behavior, 12: e1388976.

  • Yamauchi T, Tanaka A, Mori H, Takamure I, Kato K, Nakazono M. (2016) Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Plant, Cell & Environment, 39: 2145−2157.

  • Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K, Nakazono M. (2015) Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots. Plant Physiology, 169: 180−193.

  • Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M. (2015) Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Annals of Botany, 115: 879−894.

  • Takano S, Matsuda S, Funabiki A, Furukawa J, Yamauchi T, Tokuji Y, Nakazono M, Shinohara Y, Takamure I, Kato K. (2015) The rice RCN11 gene encodes β1,2-xylosyltransferase and is required for plant responses to abiotic stresses and phytohormones. Plant Science. 236: 75−88.

  • Cartagena JA, Seki M, Tanaka M, Yamauchi T, Sato S, Hirakawa H, Tsuge T. (2015) Gene expression profiles in Jatropha under drought stress and during recovery. Plant Molecular Biology Reporter, 33: 1075−1087.

  • Kulichikhin K, Yamauchi T, Watanabe K, Nakazono M. (2014) Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant, Cell & Environment, 37: 2406−2420.

  • Shiono K, Yamauchi T, Yamazaki S, Mohanty B, Malik AI, Nagamura Y, Nishizawa NK, Tsutsumi N, Colmer TD, Nakazono M. (2014) Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany, 65: 4795−4806.

  • Yamauchi T, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. (2014) Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma. Plant Signaling & Behavior, 9: e28506.

  • Yamauchi T, Johzuka-Hisatomi Y, Terada R, Nakamura I, Iida S. (2014) The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Molecular Biology, 85: 219−232.

  • Hu Z, Yamauchi T, Yang J, Jikumaru Y, Tsuchida-Mayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. (2014) Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant and Cell Physiology, 55: 30−41.

  • Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. (2014) Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany, 65: 261−273.

  • Abiko T, Obara M, Abe F, Kawaguchi K, Oyanagi A, Yamauchi T, Nakazono M. (2012) Screening of candidate genes associated with constitutive aerenchyma formation in adventitious roots of the teosinte Zea nicaraguensis. Plant Root, 6: 19−27.

  • Yamauchi T, Rajhi I, Nakazono M. (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signaling & Behavior, 6: 759−761.

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytologist, 190: 351−368.

  • Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S. (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. The Plant Journal, 60: 386−396.

  • Yamauchi T, Moritoh S, Johzuka-Hisatomi Y, Ono A, Terada R, Nakamura I, Iida S. (2008) Alternative splicing of the rice OsMET1 genes encoding maintenance DNA methyltransferase. Journal of Plant Physiology, 165: 1774−1782.

Review

  • Tanaka W, Yamauchi T, Tsuda K. (2023) Genetic basis controlling rice plant architecture and its modification for breeding. Breeding Science, 73(1). 3−45.

  • Yamauchi T, Nakazono M. (2022) Mechanisms of lysigenous aerenchyma formation under abiotic stress. Trends in Plant Science. 27(1). 13−15.

  • Yamauchi T, Noshita K, Tsutsumi N. (2021) Climate-smart crops: key root anatomical traits that confer flooding tolerance. Breeding Science, 71(1). 51−61.

  • Yamauchi T, Colmer TD, Pedersen O, Nakazono M. (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiology, 176: 1118−1130.

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T. (2013) Aerenchyma formation in crop species: a review. Field Crops Research, 152: 8−16.

  • Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice, 5: 2.

Book Chapter

  • Yamauchi T. (2024) Regulation of root tissue size and adaptations to hypoxia. In Responses of Plants to Soil Flooding, Springer, 65−76.

  • Yamauchi T, Iida S. (2015) Gene targeting in crop species with effective selection systems. In Advances in New Technology for Targeted Modification of Plant Genomes, Springer, 91−111.

  • Takahashi H, Yamauchi T, Colmer TD, Nakazono M. (2014) Aerenchyma formation in plants. In Low-oxygen stress in plants: Oxygen sensing and adaptive responses to hypoxia, Springer, 247−265.

  • Johzuka-Hisatomi Y, Maekawa M, Takagi K, Eun CH, Yamauchi T, Shimatani Z, Ahmed N, Urawa H, Tsugane K, Terada R, Iida S. (2008) Homologous recombination-dependent gene targeting and an active DNA transposon nDart-promoted gene tagging for rice functional genomics. In Rice Biology in the Genomics Era: Biotechnology in Agriculture and Forestry, 62: 81−94.

和文総説・解説

  • 山内卓樹. (2024) トウモロコシの乾燥ストレス耐性の総合的な評価系の確立. メイワフォーシス株式会社 LIC・STV ホワイトペーパー Vol. 9

  • 山内卓樹. (2024) 植物の成長と環境適応を支える根の解剖学的形質の理解に向けて. 作物研究. 69: 21-25.

  • 宮下智貴, 江尻真斗, 島村聡, 山内卓樹, 塩野克宏. (2022) 植物組織の空隙率測定方法―2. アルキメデス法―. 根の研究. 30(2): 41-45.

  • 野村康之, 塩野克宏, 島村聡, 山内卓樹. (2022) 植物組織の空隙率測定方法―3. 切片法―. 根の研究. 30(3). 76-82.

  • 島村聡, 宮下智貴, 江尻真斗, 塩野克宏, 野村康之, 山内卓樹 (2022) 植物組織の空隙率測定方法―4. 各測定方法の特徴と選択―. 根の研究. 30(4). 124-128.

  • 島村聡, 塩野克宏, 山内卓樹. (2021) 植物組織の空隙率測定方法―1.比重瓶法―. 根の研究. 30(1). 8-12.

  • 山内卓樹, 中園幹生. (2015) イネ科植物の根における過湿環境への形態的な応答・適応機構. 根の研究, 24: 23−35.

  • 山内卓樹, 中園幹生. (2014) イネ科作物の過湿環境への応答を制御する分子機構. 水田転作圃場における湿害対策, 農業および園芸, 養賢堂, 89: 1023−1029.

  • 山内卓樹, 西内俊策, 中園幹生. (2012) 植物の通気組織形成過程におけるメタロチオネインの組織特異的な発現制御. 生化学, 84: 857−862.

  • 定塚(久富)恵世, 山内卓樹, 飯田滋. (2011) メンデルの法則における不完全優性と植物の遺伝子量効果. 生化学, 83: 638−642.

和文著書

  • 山内卓樹. (2020) イネが水田で生育するしくみ―根の解剖学的観点から. イネ大事典, 農文協, 上巻, 442−462.

  • 山内卓樹. (2020) イネが水田で生育するしくみ―根の解剖学的観点から. 農業技術大系・作物編(追録41号), 農文協, 1巻, 246: 147-2−147-22.

  • 山内卓樹. (2016) イネの過湿土壌への適応に貢献する根の解剖学的特徴. 最新農業技術 作物, 農文協, 9巻, 225−240.

  • 山内卓樹. (2016) イネの過湿土壌への適応に貢献する根の解剖学的特徴. 農業技術大系・作物編(追録38号), 農文協, 1巻, 147-2−147-17.

  • 山内卓樹, 星野敦. (2016) 遺伝子のノックアウトとノックダウン. 植物学の百科事典, 日本植物学会編, 丸善出版, 608−609.

  • 定塚(久富)恵世, 星野敦, 森田裕将, 山内卓樹, 朴慶一, 寺田理枝, 森藤暁, 飯田滋. (2008) アサガオとイネのDNAメチル化と遺伝子発現. 植物細胞工学シリーズ24, 秀潤社, 24: 36−43. 


@dspb_lab
名古屋大学 生物機能開発利用研究センター 発生学・システム植物学研究室